
VCPU R1
VCPU programmer's documentation

V1.1.2

English translation: Siz
10/06/2023

1 Features
• Programmable high-capacity storage for CBM computers
• Partial 6502 CPU emulation
• Extended CPU functions
• Dedicated CPU instructions to implement communication with the computer
• Program memory can be used up to the size of file buffers (max. 1536 or 3840 BYTE)
• Unified virtual hardware for different drive implementations
• Ability to handle large files
• System calls to access different functions of the drive
• All functions of the drive available to the CPU emulation
• Possibility of software implementation of existing fastloaders
• Etc.

1.1 Goals

The goal of the Flexible SD drive firmware1 (FlexSD fw. in short) VCPU2 extension is to make

the SD2IEC3 drive capable of executing downloaded programs like the classic Commodore disk

drives. SD2IEC is a drive family with different hardware. With VCPU the executed program uses a

unified (virtual) hardware so separate support is no longer needed. Compatibility with existing

older CBM drives is not a goal! VCPU is not limited to regular disk images, it can use all of the

functions of the drive so a much larger storage becomes available to the computer than the old disk

drives. In addition any data transfer protocol can be implemented to fulfill the requirements of the

programmer.

1 Flexible SD drive firmware (FlexSD fw) is an sd2iec firmware fork. (The original can be found at
https://sd2iec.de) In this documentation the term firmware means FlexSD firmware.

2 VCPU: “Virtual CPU”. Most of these drives are built on a microcontroller (an integrated circuit containing a CPU,
data- and program memory and peripherals – so in fact a complete computer) which can execute command only
from ROM. It’s RAM can contain data only! The VCPU is a software CPU implementation running in the
microcontroller ROM which executes the program copied to RAM.

3 In this documentation the name SD2IEC refers to the hardware. These are the same as the supported hardware by
the original sd2iec firmware.

2

https://sd2iec.de/

1.2 Differences compared to programming the original Commodore drives

Programming the drive’s VCPU requires a bit different logic than the direct hardware

programming of the Commodore drives. Accessing the direct storage device is limited. The usable

commands the computer can send over the serial bus are the same but during VCPU execution the

program “moves” to the drive memory where the results of the executed tasks are stored too. The

only “near-hardware” task is communication with the computer; VCPU provides special

instructions for this.

1.3 License

Both FlexSD firmware and it’s VCPU extension are licensed under GPLv2. So using parts or

whole of the firmware must be in accordance with this license. But this license does not apply to

programs executed by the VCPU! The programmer can choose whatever license he/she wants for

the executed programs4.

4 The programmer must be aware that the program is inspected and processed by a software and there is no
protection mechanism against deciphering them.

3

2 Commands available for the computer

To program the SD2IEC drive several new commands are required which makes the VCPU

functions available to the computer. These commands (with the help of the KERNAL) can be

executed in the usual way by sending them over the “command channel” and the responses can be

read from the “error channel”. (The programming is the same as for the traditional CBM drives,

details can be found in the well known documentations.)

The VCPU extension commands follows “Zx” form. To an unknown VCPU command the drive

will respond with a “35,SYNTAX ERROR,00,00” error message.

2.1 “ZI”: Query VCPU information

The result is 5 BYTEs long:

1. VCPU version which is made of two parts: B5..05: the version itself (currently $16), B7..5:
device bus type. (Currently $2: CBM SERIAL. Reserved type codes: $1: IEEE-488, $3:
CBM FAST SERIAL, $4: CBM SERIAL + PARALLEL, $5: CBM FAST SERIAL +
PARALLEL, $6: TCBM.)

2. Size of “command channel” in BYTEs. This is usually 120, there is no lesser value present.
The computer can write this many BYTEs to the drive in the “command channel”!

3. Size of “error channel” in BYTEs. This is usually 100, there is no lesser value present. The
drive can send this many BYTEs to the computer in the “error channel”!

4. Number of data buffers. This is 6 or more (maximum 15). The drive will reserve this many
buffers of 256 BYTEs. This is actually the memory size of the VCPU, the usable program
memory. (6×256 = 1.5 KBYTE, 15×256 = 3.75 KBYTE.)

5. Last BYTE of VCPU I/O area, maximum number of I/O registers -1.

Returned VCPU version is currently $41. (%010 and %00001.) If the drive does not have a

VCPU extension it will return “30,SYNTAX ERROR,00,00” error message. In this response the

first BYTE is always $33 (ASCII code of “3”). VCPU version BYTE will never have a value of

$33 so this can be used easily to detect the presence of the expansion in the drive firmware.

(Checking for the presence of VCPU this command is the recommended. The drive – normal / short

– version string characters does not necessarily refer to VCPU support, they may change in the

future!)

5 Designation of bits in a BYTE is “B” + number of bit. In case of multiple bits the range is specified! (B5..0)
Numbering of the bits is the usual: the least significant bit is 0 (B0), the most significant is 7 (B7).

6 In this documentation the number systems follow the convention of 6502 assemblers: hexadecimal numbers are
marked with prefix “$”, binaries are marked with prefix “%”. Numbers without prefix are interpreted in decimal
number system.

4

2.2 “ZB”: Query data buffer state

The response is 2 BYTEs for all usable data buffers in the device:

1. Data buffer in use marker, bit 0 (B0) with value %1 marks a used buffer, %0 marks free.
Other bits can be used in drive firmware but their meaning is irrelevant here. (Meaning of
bits other than B0 can change in the future so their value must be ignored!)

2. The channel number belonging to the data buffer (Parameter 3 of OPEN statement, the
“secondary address”) used by the computer. This is only valid when the buffer is in use. (B0
of the previous BYTE = %1)! Value is between 0..14 is the data buffer is used for normal file
operations. Drive firmware can allocate buffers for special uses. In this case their channel
number will be outside of this range.

The above two BYTEs are repeated in the response as many times as many data buffers the

drive has.

2.3 “ZR”+ADDRLO+ADDRHI+LENGTH: Read data buffers as memory

This is the equivalent of the “M-R” command of the 15x1 drives but this one is limited to data

buffers only so not all of the SD2IEC drive memory can be read. Size of memory read (with a

single command) is limited by the size of the “error channel”. Attempting to read more will result in

error! (“35,SYNTAX ERROR,01,00”) Omitting “LENGTH” parameter will result in reading 1

BYTE. If the read refers to an address outside the usable memory range it will result in an error too!

(“35,SYNTAX ERROR,02,00”)

2.4 “ZW”+ADDRLO+ADDRHI+BYTE1+…: Write data buffers as memory

Similar to the “M-W” command of 15x1 drives. Memory beginning from the specified address

will be written with as many BYTEs as many are present in the package. (The command does not

have a size parameter unlike the “M-W” command!). Number of writable BYTEs are limited by the

size of the “command channel”, the whole memory write command must fit into it! If an address

outside the usable memory range is specified an error will be returned (“35,SYNTAX
ERROR,03,00”). After a successful write the response will be “00, OK,00,00”.

5

2.5 “ZE”+ADDRLO+ADDRHI+…: Execute program using VCPU

With parameters after the “ZE” command not only the start address but all of the VCPU

registers can be set. When no parameters specified (not even a start address) the execution will

resume with the actual state from the actual position. Parameters can be found at command “ZC”.

The response (and the possibility of query) depends on the executed program, it can return

anything.

WARNING: the time elapsed between issuing the command “ZE” and the start of the VCPU

program execution is not guaranteed, it can depend on the type of the drive and other circumstances.

Because of this it’s recommended to implement some kind of synchronization which “notifies” the

computer that the drive side code has started. (For example it can generate an impulse on some of

the lines of the serial bus and the computer waits for that.)

2.6 “ZC”: Query VCPU state

This command returns the (current) state of the VCPU:

• PCL + PCH: two BYTEs for current PC position
• A: Accumulator
• X: X index register
• Y: Y index register
• SR: status register
• SP: stack pointer
• SPH: stack pointer upper bits (B15..8)
• ZPH: zero page upper bits (B15..8)
• INT: interrupt code
• FUNCT: code of the called function
• LASTOP: code of last executed instruction

In command “ZE” the parameters are from PCL to ZPH are these values in this order. If no

address specified the execution will start from the address that is resulted here. INT / FUNCT /

LASTOP values can be used for troubleshooting.

6

3 The VCPU

3.1 Major differences

VCPU consists of a software implemented 6502 emulator and a connected (also emulated)

hardware. 6502 emulation is not complete, there are some missing and some additional functions:

• Cycle exact execution was not a goal; current implementation executes programs at about
the speed of a 1 MHz 6502. (Some instructions are faster, others are slower.)

• “Undocumented” instructions of the original MOS 6502 are not supported! When these
opcodes are encountered the execution will be interrupted with an error code. (However
some of these opcodes are assigned to new instructions those will execute their proper
function.)

• BCD mode is not implemented! CLD instruction is equivalent to NOP, SED is “illegal”.
• Traditional interrupt handling is missing. SEI instruction is NOP, CLI is “illegal”. But RTI

is implemented, can be used in the usual way.
• Program execution is possible only from memory assigned to RAM! This memory is the

address range $0000..$05FF of the emulated 6502 for 6 data buffers and $0000..$0EFF
for 15 buffers. Jumping outside this range will interrupt the execution with an error code!

• JMP ($xxFF) instruction works as expected, the buggy operation of the original 6502 is
not implemented. Target address of the indirect jump must reside in the RAM area too!!

• BRK instruction is used for system calls but those are not executed by the CPU emulation.
Because of this the stack operations of BRK are not implemented.

3.2 VCPU extended functions

This functions are not supported by the original 6502!

• SPH register: the stack pointer (SP) of the 6502 is 8 bits, upper 8 bits are always $01. In
VCPU this is stored in register SPH, so the stack can be relocated to an other memory page.
Over- or underflow of the 8 bits SP does not modify SPH!

• ZPH register: the zero page of the original 6502 is always located at $0000..$00FF. In
VCPU the upper 8 bits of the address can be changed so the zero page can be relocated to an
other memory page. This affect the zero page addressing modes only! In case of changed
ZPH the direct addressed instructions (for example: LDA $0080) always refer to the real
address7!

• Handling of the CBM SERIAL, the serial bus is done by special “micro” instructions. By
using them any kind of data transfer protocol can be programmed “by basic steps”. The
execution time for most of these instructions are fixed so time critical transfers can be
implemented too.

7 This is especially important for Y-indexed addressing modes because usually the instructions does not have a
$zp,Y addressing mode! But compilers will generate $qwer,Y addressing mode which – in case of relocated
zero page – will not use the expected address.

7

3.3 Memory map for the emulated 6502
• $0000..$05FF / $0000..$0EFF: the memory buffers for file handles and RAM area for

programs
• $FC00..$FCFF: the “command channel” of the drive can be read/written in this area but

only in the length of the channel
• $FD00..$FDFF: the “error channel” of the drive can be read/written in this area but only in

the length of the channel
• $FE00..$FEFF: I/O area, current length is 16 BYTEs

3.4 I/O registers

Address Mode B7 B6 B5 B4 B3 B2 B1 B0

$FE00 RO BUS2 BUS1 BUS0 VCPU4 VCPU3 VCPU2 VCPU1 VCPU0

$FE01 RO IOSIZ2 IOSIZ1 IOSIZ0 BNO4 BNO3 BNO2 BNO1 BNO0

$FE02 R/W NEXT PREV DISPLY - - - DIRTY BUSY

$FE03 RO USW1 USW0 - UNIT4 UNIT3 UNIT2 UNIT1 UNIT0

$FE04 R/W FW diagnostics, not usable

$FE05 R/W FW diagnostics, not usable

$FE06 - Not used

$FE07
W Binary → decimal converter peripheral – Write binary data to convert decimal digits

R Decimal value – least significant digit

$FE08
W Binary → decimal converter peripheral – Write binary data to convert ASCII digits

R Decimal value – middle significant digit

$FE09
W -

R Decimal value – most significant digit

$FE0A R/W ATN out SRQ out - - - - - -

$FE0B RO ATN in SRQ in - - - - - -

$FE0C R/W - - - - - - DAT out CLK out

$FE0D RO DAT in CLK in - - - - - -

$FE0E
R CLK in - - - - - - -

W - - - - - - - CLK out

$FE0F
R DAT in - - - - - - -

W - - - - - - - DAT out

8

• $FE00: VCPU version number, read only. (Currently $41, the same value that is present in
the response of the “ZI” command.)

• $FE01: I/O area size (B765), memory size (B43210), read only.
• $FE02: State of SD2IEC buttons and LEDs, read/write. B0 = “BUSY LED”, B1 = “DIRTY

LED”. %1: LED is on. B6 = “PREV BUTTON”, B7 = “NEXT BUTTON”. If an external
display can be connected to the drive, then B5 = “DISPLAY BUTTON”. %1: button is
depressed.

• $FE03: Current device number of SD2IEC device (B43210 = 8..11), read only. If there is a
switch on the drive to configure the device number, then B76 = device number switches
status. (The switches status and the device number do not necessarily have to be the same
value; the device number can be set to a value independent of the switches status with the
appropriate command!)

• $FE04..$FE05: Diagnostics, the function may change in the future, not usable!!
• $FE06: Unused, $00
• $FE07: Binary → decimal conversion peripheral. The BYTE written here is converted to

decimal digits (000...255), when read, the least significant digit of the converted value (0...9,
'0'..'9') is located here.

• $FE08: Binary → decimal conversion peripheral. The BYTE written here is converted to
ASCII characters ("000".. "255"), when read, the middle significant digit of the converted
value (0..9, '0'..'9') is located here.

• $FE09: Binary → decimal conversion peripheral. When read, the most significant digit of
the converted value (0..2, '0'..'2') is located here.

• $FE0A: ATN / SRQ lines control, read/write. B7 = ATN, B6 = SRQ. For write the drive of
the lines can be turned on/off for read the set state can be read back not the current state of
the lines!

• $FE0B: Current state of ATN / SRQ lines, read only! B7 = ATN, B6 = SRQ.
• $FE0C: CLK / DAT lines control, read/write. B1 = DAT, B0 = CLK. For write the drive of

the lines can be turned on/off for read the set state can be read back not the current state of
the lines!

• $FE0D: Current state of CLK / DAT lines, read only! B7 = DAT, B6 = CLK.
• $FE0E: Current state of CLK line, read only! B7 = CLK.
• $FE0E: CLK line control, write only! B0 = CLK.
• $FE0F: Current state of DAT line, read only! B7 = DAT.
• $FE0F: DAT line control, write only! B0 = DAT.

At address $FE02 the LEDs on the device can be controlled. Not all devices contain both

LEDs! There are SD2IEC hardware with only 1 LED, that can be controlled by the bit of “BUSY

LED”. The LEDs can be programmed easily but the system calls (file open/close/etc.) can change

them the usual way so their state is not guaranteed to be kept. (It’s useful to leave their control to

the drive firmware “in normal use”). In case of error the usual “flashing LED” won’t work during

the execution of a VCPU program!

9

The same $FE02 address can be used to query the state of the drive’s two buttons, and the state

of the external display button (one of them), if available. During a VCPU program execution the

original functions of the buttons does not work! There is SD2IEC hardware without buttons!

Therefore the use of these buttons is not recommended. The occasional disk image swap is possible

in a programmed way but it’s useful to do it in an automated way without user interaction.

In the range of $FE0A..$FE0F the control lines for the serial bus can be found. These registers

won’t be expanded in the future, the unused bits are guaranteed to return the value %0, any value

can be written to the unused bits! The handling of the serial bus is possible using these registers but

not recommended. For this task the VCPU has dedicated instructions.

4 CBM serial bus

4.1 Hardware

The lines of the serial bus are at logical high level when not in use. This high level can be pulled

low by any device (computer / peripheral) attached to the bus. High level is possible on any lines of

the bus when all of the devices turn off the pull low! Because of this in this document the term

“driving the line” always means that the device pulls the line low and “releasing the line” means

that the pulling low is switched off. In the latter case the high level can be present only when all of

the devices “releases” that. (None of the devices can “force” a line to high level.)

4.2 Software

Software can handle the lines of the serial bus as a bit of a peripheral register by. The “level” of

the given line is shown by the appropriate peripheral bit. “Driving” and “releasing” the line is

controlled by toggling a bit of a different peripheral. On the SD2IEC side the peripheral bit always

shows the actual logical level of the lines (for a low level line %0, %1 for high level), controlling the

output is done the same way (%0 pull low, %1 releases).

10

4.3 Lines

Serial bus has 4 lines relevant for programming. These (and their original functions) are:

• SRQ: Service ReQuest. Not used. This line should be driven by peripherals, it’s input on
computer. In 1541 this line is not connected. In VIC20 one of the VIAs receive it. The CPU
can’t read it’s real level but the change can generate an interrupt. In the C64 it work the
same: one of the CIAs receive it and an interrupt can be generated. It’s not connected in the
C16 / C116 / plus/4 computers. On the C128 the “fast serial bus” mode uses it but drive
firmware does not support it yet. Controlling the SRQ line by VCPU is currently not
implemented! On most of SD2IEC hardware – as it’s not used – controlling the line is not
implemented!

• ATN: ATtentioN: call for device addressing. This line is controlled by the computer, it’s
input on peripherals. At low level the device addressing is done, this is the time when the
computer selects the peripheral to communicate to. In 1541 this is input only it’s change
controls turning on driving DAT. SD2IEC – unlike CBM peripherals – can drive it and it can
be controlled by VCPU. On VIC20, C64, C16 / C116 / plus/4 and C128 the line is output
only, the state of the line cannot be read back! Driving by SD2IEC can be useful when the
communication is directly between peripherals without including a computer.

• CLK: CLocK: the “clock” of the data transfer, this helps to synchronize the transferred bits.
Can be driven by both computers and peripherals.

• DAT: DATa: the transferred data bit. Can be driven by both computers and peripherals.

11

5 VCPU instruction set

The VCPU instructions can be divided to 3 groups: the original 6502 instructions, the extended

functions’ instructions and the serial bus handler “micro” instructions. The documentation for the

instructions in the first group can be found in the well known documentations about programming

the 6502.

5.1 Instructions of the extended functions

Mnemonic Op-code Registers8 Description

TYSPH $D4 SPH Transfer Y to SPH register

TSPHY $F4 Y,N,Z Transfer SPH to Y register

LDSPH #$xx $22 $xx SPH LoaD SPH register

• TYSPH: moves value of register Y to register SPH
• TSPHY: moves value of register SPH to register Y
• LDSPH #$xx: loads the value to register SPH

TYZPH $44 ZPH Transfer Y to ZPH register

TZPHY $54 Y,N,Z Transfer ZPH to Y register

LDZPH #$xx $02 $xx ZPH LoaD ZPH register

• TYZPH: transfers value of register Y to register ZPH
• TZPHY: transfers value of register ZPH to register Y
• LDZPH #$xx: loads the value to register ZPH

Registers SPH / ZPH must point to RAM area! On an attempt to write a value that points outside

of RAM the program execution is interrupted with an error code.

8 N, V, B, D, I, Z, C characters denote the bits of the status register, A, X, Y, SP, SPH, ZPH refers to CPU registers.

12

5.2 Serial bus handling “micro” instructions

Most of these instructions do not change the status register’s bits! Execution times are fixed, the

unit is 1 clock period of the 1MHz 6502 in the 1541. (1 6502 clock cycle is “1T”.)

Mnemonic Op-code Time Registers Description

UWATL $43 1.5T+ - Wait for serial ATN line Low

UWATH $53 1.5T+ - Wait for serial ATN line High

UWCKL $23 1.5T+ - Wait for serial CLK line Low

UWCKH $33 1.5T+ - Wait for serial CLK line High

UWDTL $03 1.5T+ - Wait for serial DAT line Low

UWDTH $13 1.5T+ - Wait for serial DAT line High

• UWATL: Waits for serial bus line ATN low level
• UWATH: Waits for serial bus line ATN high level
• UWCKL: Waits for serial bus line CLK low level
• UWCKH: Waits for serial bus line CLK high level
• UWDTL: Waits for serial bus line DAT low level
• UWDTH: Waits for serial bus line DAT high level

These instructions wait for the desired level of the serial bus lines. If the line is already at the

waited level before beginning of the instruction execution then execution time will be 1.5T. Waiting

will be finished in less than 1T after the line reached the watched level and the execution continues.

USATL $C3 1.5T - Set serial ATN line to Low

USATH $D3 1.5T - Set serial ATN line to HighZ

USCKL $A3 1.5T - Set serial CLK line to Low

USCKH $B3 1.5T - Set serial CLK line to HighZ

USDTL $83 1.5T - Set serial DAT line to Low

USDTH $93 1.5T - Set serial DAT line to HighZ

• USATL: Sets serial bus line ATN to low
• USATH: Releases serial bus line ATN
• USCKL: Sets serial bus line CLK to low
• USCKH: Releases serial bus line CLK
• USDTL: Sets serial bus line DAT to low
• USDTH: Releases serial bus line DAT

13

These instructions control the serial bus lines. “Releasing the line” is done only on the SD2IEC

side, other devices can still hold it at low level!

UCLDL $0B 1.5T - Set serial CLK to Low / DAT to Low

UCLDH $1B 1.5T - Set serial CLK to Low / DAT to HighZ

UCHDL $2B 1.5T - Set serial CLK to HighZ / DAT to Low

UCHDH $3B 1.5T - Set serial CLK to HighZ / DAT to HighZ

• UCLDL: Sets serial bus lines CLK and DAT to low
• UCLDH: Sets serial bus line CLK to low and releases DAT
• UCHDL: Releases serial bus line CLK and sets DAT to low
• UCHDH: Releases serial bus lines CLK and DAT

With these instructions the serial bus CLK and DAT lines can be controlled in a single step.

UATCK #$xx $6B $xx 2T - Copy A register bit To CLK line

UCKTA #$xx $7B $xx 2T A Copy CLK line to A register bit

UATDT #$xx $4B $xx 2T - Copy A register bit To DAT line

UDTTA #$xx $5B $xx 2T A Copy DAT line To A register bit

• UATCK #$xx: Drives/releases the CLK line based on the selected bit of register A
• UCKTA #$xx: Copies the state of CLK line to the selected bit of register A
• UATDT #$xx: Drives/releases the DAT line based on the selected bit of register A
• UDTTA #$xx: Copies the state of DAT line to the selected bit of register A

The parameter of the instructions is a bitmask where only a single bit can have the value %1!

Reading CLK / DAT the value of the line is copied to that bit of accumulator where the %1 is

present in the bitmask parameter. On write driving/releasing the state of the line will be set based on

the bit of accumulator where the bitmask value is %1. Attention: VCPU SR bits does not change on

accumulator value change!

14

UATCD #$xx,#$yy $8B $xx $yy 2.5T - Copy A register bits To CLK / DAT

UCDTA #$xx,#$yy $9B $xx $yy 2.5T A Copy CLK / DAT line To A register bits

• UATCD #$xx,#$yy: Controls the CLK/DAT lines based on bits of register A
• UCDTA #$xx,#$yy: Copies the state of CLK/DAT lines to the selected bits of register A

The parameters of the instructions are two bitmasks, both of them with a single %1 bit! The first

bitmask belongs to the CLK line and the second to DAT. On read the state of CLK will be written to

the bit of accumulator where the %1 value is present in the first bitmask and the state of DAT

likewise with the second bitmask. On write the first bitmask controls driving/releasing CLK and the

second control DAT. Attention: VCPU SR bits are not affected even when value of accumulator is

changed!

These instructions are restricted to parameter values where only one bit is %1. (So $01, $02,

$04, $08, $10, $20, $40, $80.) Result of other bit combinations is “undefined”. (On read when

multiple bits are %1, the selected line will be copied to all bits with %1 value in the mask. Probably

this won’t change in the future. On write when multiple bits are %1 then some logical combination

of accumulator bits will determine the state of the line that can depend on the hardware version of

SD2IEC so it’s not recommended to use “illegal” bitmasks.) On instructions that read/write two

lines the two bitmasks cannot be the same! (On read it’s “undefined” which line’s state will be

copied to accumulator. On write both lines’ state will be set based on the same bit of accumulator,

most probably this won’t change in the future.)

ULBIT $DB 2T N,V,Z Lines BIT test

• ULBIT: Copies the current state of the serial lines to the bits of the status register

This instruction copies the current state of the serial lines to the bits of the status register: ATN

goes to V, CLK goes to N, and DAT goes to Z. The conditional jumps after the instruction will do

the jump based on the state of the checked line. (BVS / BVC: ATN line high / low, BMI / BPL: CLK

line high / low, BEQ / BNE: DAT line high / low.)

15

USND1 $63 ?T Send A register to DAT, 1 bit mode

URCV1 $73 ?T A Receive from DAT to A register, 1 bit mode

USND2 $E3 ?T Send A register to CLK/DAT, 2 bit mode

URCV2 $F3 ?T A Receive from CLK/DAT to A register, 2 bit mode

• USND1: 1 bit synchronized data send
• URCV1: 1 bit synchronized data receive
• USND2: 2 bits synchronized data send
• URCV2: 2 bits synchronized data receive

The “1 bit” instructions implement sending/receiving of 1 BYTE synchronized data using

CLK / DAT lines. Synchronization is done by line CLK which is toggled by the computer and the

drive responds to it’s changes. Because of this the execution time is undefined, depends on the

speed of the computer:

• The USND1 instruction is for sending data. At first it switches off driving of line CLK then
waits for it’s high level. When CLK is high it copies the value of bit 0 of register A to DAT.
After that it wait for low level of line CLK. When the computer received B0 it switches
CLK to low. In response the drive copies bit 1 of register A to DAT and waits for CLK to be
high. When the computer received B1 it releases CLK. Then the drive puts the next bit to
DAT and so on. At the end of the BYTE the computer sets CLK to low and the drive puts bit
7 of register A to DAT and the instruction terminates and the next one can begin.

• The URCV1 instruction is for receiving data. At first it switches off driving of lines CLK /
DAT then waits for CLK low level. The computer copies B0 of the data to be sent to DAT
and switches CLK to low. In response the drive reads DAT to bit 0 of register A then waits
for CLK high. The computer sets B1 to DAT then toggles CLK to high. Then the drive reads
DAT to bit 1 of register A and so on. At the end of the BYTE the computer copies bit 7 to
DAT and releases CLK then the drive reads B7 to register A and the instruction terminates
and the next one can begin.

The “2 bits” instructions use lines ATN / CLK / DAT to implement synchronized sending /

receiving of a whole BYTE. The synchronization is done with line ATN which is toggled by the

computer and the drive reacts to it’s changes. Because of this the execution time is undefined,

depends on the speed of the computer:

• The USND2 instruction is for sending data. At first it switches off driving ATN then waits
for it’s high level. When ATN is high it copies bit 1 of register A to DAT and bit 0 to CLK.
Then waits for ATN low level. When the computer received B1/B0 it toggles ATN to low. In
response the drive copies bit 3 of register A to DAT and bit 2 to CLK then waits for ATN
high level. When the computer received B3/B2 it releases ATN. Then the drive puts the next
bit pair to DAT/CLK and so on. At the end of the whole BYTE the computer toggles ATN to
low and in response the drive puts bits 6 / 7 of register A to CLK/DAT and the instruction
terminates and the next one can begin.

16

• The URCV2 instruction is for receiving data. First it switches off driving ATN / CLK / DAT
lines and waits for ATN low. Computer puts B0 of data to DAT and B1 to CLK then sets
ATN to low. The drive reads DAT to bit 0 of register A and CLK to bit 1 and waits for ATN
high. Computer sets B2 to DAT and B3 to CLK then sets ATN to high. The drive reads DAT
to bit 2 of register A and CLK to bit 3 and so on. At the end of the BYTE the computer
copies bits 6 / 7 to DAT / CLK lines and releases ATN. Then drive reads DAT to B6 of
register A and CLK to B7 and the instruction terminates and the next one can begin.

UINDB $offs $AB $of 1.5T/2T X,Y INcrement X, Decrement Y, Branch if no cy.

UDEDB $offs $BB $of 1.5T/2T X,Y DEcrement X, Decrement Y, Branch if no cy.

• UINDB $offs: increment X, decrement Y and jump when Y did not became $FF
• UDEDB $offs: decrement X, decrement Y and jump when Y did not became $FF

These instructions increase or decrease the value of register X. Then decrease the value of

register Y. When that underflow from $00 to $FF the execution continues with the next instruction.

In this case the execution time is 1.5T. When Y did not become $FF execution will jump to the

parameter of the instruction and the whole execution time will be 2T. (The destination address is

calculated in the same way as for all 6502 conditional jumps: the parameter is treated as a signed

value in the range of -128..+127 and added to PC). Crossing a 256 BYTE page boundary does not

affect the execution time. Attention: the VCPU SR bits are not affected by the execution of these

instructions!

UDEL1 $EA 1T - 1T DELay

UDELY #$xx $FB $xx 1.5T+ - DELaY

• UDEL1: 1T delay
• UDELY #$xx: 1.5T + $xx × 0.5T delay

UDEL1 instruction is 1T delay. (This is the opcode of NOP on the original 6502, execution time:

1T). UDELY is a delay instruction where the time is specified by the fixed value in the parameter.

The shortest time is 1.5T. That is extended with the parameter value × 0.5T.

17

There are four additional data movement instructions:

LDA $zp,X $B5 $zp 2T A,N,Z LoaD Accumulator from zero page X indexed

STA $zp,X $95 $zp 2T - STore Accumulator to zero page X indexed

PLA $68 1.5T SP,A,N,Z PulL Accumulator from stack

PHA $48 1.5T SP PusH Accumulator to stack

The first two instructions are the original 6502 X indexed zero page read / write instructions but

their execution time is 2T. As the VCPU zero page can be relocated anywhere (within the memory)

they can read / write the whole memory. The other two instructions are the original 6502 stack

read / write instructions but their execution time is 1.5T. As the VCPU stack can be relocated they

can access the whole memory.

5.3 Call drive firmware functions

Mnemonic Op-code Registers Description

BREAK #$xx $00 $xx A,X,Y System Call

• BREAK #$xx: call system function number $xx

This is the BRK instruction of the original 6502. The instruction and the following byte is

processed by directly drive firmware instead of the VCPU. The VCPU state is saved and the system

call is processed.

6 System calls

With the BREAK #$xx instruction various drive firmware functions can be accessed. The

parameter is the number of the system function. The program execution will be suspended when the

function requires stopping the CPU emulation. For other tasks the emulated 6502 code execution

continues from the address after the parameter of the BRK + parameter instruction. The system call

will put its return values in VCPU A / X / Y registers so their contents are not preserved! The bits of

the status register are not set by the value of any of the registers, the returned values must be

checked!

18

6.1 Codes of system calls

Code Referenced name Description

$00 SYSCALL_EXIT_OK Exit with messages “00, OK,00,00”

$01 SYSCALL_EXIT_SETERROR Exit with selected message

$02 SYSCALL_EXIT_FILLEDERROR Exit with “error channel” filled

$03 SYSCALL_EXIT_REMAIN Exit without modifying the “error channel”

$11 SYSCALL_DISABLEATNIRQ Disables the ATN active VCPU exit

$12 SYSCALL_ENABLEATNIRQ Enables the ATN active VCPU exit

$13 SYSCALL_SETFATPARAMS Set FAT file handling parameters

$21 SYSCALL_DIRECTCOMMAND Execute command from “command channel”

$22 SYSCALL_DIRECTCOMMAND_MEM Copy command from memory to “command
channel” and execute it

$23 SYSCALL_OPEN Open file (name in “command channel”)

$24 SYSCALL_OPEN_MEM Open file (name in memory)

$25 SYSCALL_CLOSE Close file

$26 SYSCALL_CLOSEALL Close all open files/channels

$27 SYSCALL_REFILLBUFFER Refill buffer for reading / buffer flush for write

$28 SYSCALL_GETCHANNELPARAMS Query channel parameters

$31 SYSCALL_CHANGEDISK Request change disk

6.2 Description of system calls
• $00: SYSCALL_EXIT_OK: Terminate VCPU program execution. The contents of the

“error channel” will be “00, OK,00,00” and the computer will be able to handle the
peripheral in the usual way.

• $01: SYSCALL_EXIT_SETERROR: Terminate VCPU program execution. The contents of
the “error channel” will be set to the required message! Before the system call register A
must contain the error code and registers X / Y must contain the track / sector numbers. Only
existing error codes are allowed!

• $02: SYSCALL_EXIT_FILLEDERROR: Terminate VCPU program execution. The “error
channel” must be filled and X must contain the number of bytes put in error channel. After
that the system function can be called.

• $03: SYSCALL_EXIT_REMAIN: Terminate VCPU program execution. Without changing
the contents of the “error channel”. (When a previous function returned with error using this
function to terminate VCPU code execution the computer will be able to query the error in
the usual way)

• $11: SYSCALL_DISABLEATNIRQ: The default behavior is to interrupt VCPU code
execution when ATN goes active. This can be switched off with this system call when the
ATN is required for other purposes.

19

• $12: SYSCALL_ENABLEATNIRQ: Turns back on the interrupt of VCPU code execution
for ATN active.

• $13: SYSCALL_SETFATPARAMS: drive firmware reads / writes files in 254 byte block in
case of the FAT filesystem, just like as in a disk image. This system call can change this
behavior. Before the call register X must contain the starting position in within the data
buffer (default is 2, this is the start for loaded data), and register Y contains the number of
bytes to be read in one step (default value is 254). 0 means 256 BYTEs! After the system
call registers X / Y will contain the values set. If the starting position plus BYTE count is
higher than the size of the data buffer (256), the setting will not be applied! After return the
registers will contain the actual values so with “bad” parameters the current settings can be
queried.

• $21: SYSCALL_DIRECTCOMMAND: The computer can communicate the tasks to the drive
via the “command channel”. (Delete file, change directory, etc.) VCPU can execute
commands in the same way: the “command channel” is mapped in the memory of the 6502.
The commands bytes must be written here directly. The number of bytes in the “command
channel” must be set in register X and the system function can be called. Drive firmware will
try to execute the command then returns to the VCPU program execution. After the system
call register A will contain the error code from the “error channel” and register X will
contain the number of bytes in the “error channel”.

• $22: SYSCALL_DIRECTCOMMAND_MEM: This command is the same as the previous one
(number $21) but before execution the command will be copied from the VCPU memory to
the “command channel”. Before call register pair ZPH:Y must be set to the starting address
of the command and register X must be set to the number of bytes to be copied (the length of
the command). Return values are the same as for command $21.

• $23: SYSCALL_OPEN: Open file. The “command channel” must contain the name and
open mode of the file, register X must be set to the length of the filename. Register A must
be set to the number of the requested channel which must be between 0..14. After return
register A will contain the error code from the “error channel”, register X will contain the
number of bytes written to the “error channel”. Register Y will contain the number of the
data buffer associated with the file. This value is the upper 8 bits of the VCPU memory. For
example number $02 means that the buffer is at $0200..$02FF in the memory! If the
buffer allocation fails, $FF is written to the register. Additionally in the “error channel”
memory ($FDxx) three additional data can be found: starting position of data in the buffer
($FD60), position of the last used BYTE ($FD61), and a flag signaling if there is data left
in the file ($FD62).

• $24: SYSCALL_OPEN_MEM: This command is the same as the previous one (number $23)
but before execution copies the file name from the VCPU memory to the “command
channel”. Before call the address of the memory must be set in register pair ZPH:Y, in
register X the number of bytes to be copied (length of the filename). Register A must contain
the number of the requested channel just like with command $23. Returned values are the
same as there.

• $25: SYSCALL_CLOSE: Close File / channel. Register A must contain the channel number
specified for OPEN then call the system function. In case of successful execution register A
will contain $00.

• $26: SYSCALL_CLOSEALL: Close all open files / channels. There are no parameters and
return values.

20

• $27: SYSCALL_REFILLBUFFER: For file read this system call can be used to request
loading of the next set of bytes. Register A must contain the number of the channel specified
for OPEN the call the function. The returned parameters are the same as for commands
$23 / $24: SYSCALL_OPEN (_MEM). For file write when the data buffer is full or no more
bytes need to be written register X must contain the starting position in the buffer and
register Y must contain the position of the last used byte. Register A is the number of
channel used for OPEN. The returned parameters are the same as for command $23 / $24:
SYSCALL_OPEN (_MEM).

• $28: SYSCALL_GETCHANNELPARAMS: Query channel parameters. Register A must be
set to the number of the channel to be queried. Returned parameters are the same as for
commands $23 / $24: SYSCALL_OPEN (_MEM).

• $31: SYSCALL_CHANGEDISK: “Disk change” function of drive firmware. Using this
function the disk images can be swapped based on the contents of an external swap list file.
Register X must be filled with the number of the disk image. Register A will be set to $00
on successful disk change. To use this function the swap file must be set for drive firmware
(AUTOSWAP.LST). When the user chooses image with the buttons on the SD2IEC device
this change will be done automatically. The swap file can be mounted without user
interaction using the “XS:AUTOSWAP.LST” command. (See drive firmware
documentations)

21

7 VCPU program execution error handling

VCPU program execution can terminate for several reasons beside “SYSCALL_EXIT_xxx”

system calls. When a system call with an unknown code is made a “97,VCPU ERROR,101,xx”

error will be set where xx is the code of the unknown system function. For other terminate reasons

the result will be “97,VCPU ERROR,100,xx” where xx will be the same as the INT parameter

of the “ZC” command. The bits of this BYTE mean different events:

• B7: drive firmware compilation error. The programmer / user should not encounter this one.
It means the firmware is not properly compiled.

• B6: Address error. When the VCPU would jump to an unavailable address the execution will
be terminated with this signal.

• B5: Address error. The system call was made from an invalid address.
• B4: Invalid instruction. Execution “illegal” opcodes will be terminated with this signal.
• B3: SD card has been removed (or inserted if there was no card inserted previously).
• B2: Program execution is terminated due to ATN active. This can be disabled with the

proper system calls!
• B1: Read / write address error. When the VCPU would read / write outside of the usable

memory / I/O buffers the execution will be terminated with this signal.
• B0: Program execution is terminated due to system call. This will be set for exit system

calls.

22

8 Remarks

8.1 1 bit / 2 bits

A lot of users does not use the SD2IEC drive as a single dive, they have a 15x1 drive connected

too. The basic operation of the serial bus that in response to the computer’s ATN active signal the

peripherals pull the DAT line to low. Because of this the programs that use ATN for data transfer

can be used only when there is only one peripheral on the serial bus! For these cases the SD2IEC

drives provide a feature to “disconnect” them from the serial bus without actually plugging them

off. It’s important to note that in case of the original 15x1 drives this is not possible! (Turning off

the drive is not enough, the drives must be plugged off!) Due to this behavior the SD2IEC transfer

routines should be implemented to use ATN in very justified cases! Of the above, synchronous

transfers the 1 bit versions does not use ATN. Preferred communication protocols use CLK / DAT

only!

8.2 Buffers / memory

The VCPU program memory is part of the drive firmware data buffers. For this reasons the

programmer must be careful to not putting program code to the buffers used by file operations

because they will be overwritten. The programmer (currently) can’t control which operation will

use which buffer but – fortunately – the buffer allocation / freeing is reliable. The drive firmware is

allocating buffers from the beginning, in order but there are some thing to be considered. When the

user (or the program itself) uses disk images the drive will allocate a buffer to handle that

“internally”. In generic uses cases this will be buffer 0. This buffer remains allocated after the user

“exits” that disk image! In addition the opened file allocates a buffer too which in this case will be

buffer 1. But if this file is not inside a disk image and the user haven’t used a disk image yet this

will be buffer 0! For this reason the number of the buffer used should be handled dynamically.

These two buffers will be the VCPU memory range $0000..$00FF and $0100..$01FF.

Because of this the zero page and the stack must be relocatable and the VCPU supports this. The

remaining memory for the drives with few buffers is scarce, 1 KBYTE which is half of the memory

of the 1541. But the disk handling functions are provided by the drive firmware so the complex (and

thus memory intensive) program codes are not required here.

Number of buffers is determined by the amount of RAM in the SD2IEC drive’s microcontroller.

As this was not really relevant before most of the users have an SD2IEC drive which allows 6

23

buffers only. Because of this the programmer should be prepared for this number. When more

memory is required the users won’t have the hardware to support that so they won’t be able to run

that program.

8.3 “Command channel” and “error channel” as memory

The “command channel” and “error channel” can be used to store temporary data while the

VCPU program is running, but there is no guarantee that its contents will be preserved during

system calls! (The same applies to the characters of the command in the “command channel”!

Therefore, before calling any command, the whole command must be copied into the “command-

channel”, it is not sufficient to replace only the possibly modified characters.) It is not possible to

run programs with VCPU from these memory areas!

8.4 Disk images / Directories

The different disk images can be accessed as simple directories with the drive firmware.

Changing directories are done with the “CD:...” command. (See drive firmware documentation

for more details.) In addition switching between directories / disk images is also possible using

“AUTOSWAP.LST” (or any other, manually specified) file. (In normal operation stepping between

the disk images / directories in the list is done by using the device buttons. During a VCPU program

execution the SYSCALL_CHANGEDISK ($31) function is also possible.) Important: during

directory / disk image change all the open file / communication channel gets closed! When a

communication channel was open for the sector level handling of a disk image it must be reopened

after the disk swap!

8.5 Storage speed

Although most of the load (save) time is made of the communication between drive ↔

computer but time for accessing the SD card and handling its file system is not negligible. But these

times depend on the type of the card, the parameters of the file system (FAT type, cluster size, etc.),

the location of the file, etc. The programmer must not assume that the times experienced during

development will be met by the configuration of every user!

8.6 Filenames

Filenames on CBM drives can be up to 16 characters long. The file “extension” is not part of the

name, and there are only a few variations. (PRG, SEQ, USR, REL.) FlexSD fw handles different

24

versions of the FAT file system on the SD card (FAT-12, 16 and 32). In this file system, file names

were originally limited to 8 characters in length, with an additional 3 character “extension”, which

in this case could be anything. The drive firmware uses the LFN extension of the FAT file system,

which allows longer file names (up to 255 characters). However, for compatibility reasons, all files

also have “short” names of size 8+3. If a FAT “long” filename is 16 characters or less, it is available

with the same CBM filename. If the file name is longer than 16 characters, the CBM filename will

be the 8+3 character short name of the FAT file! The length of the file name includes the extension

characters, but the firmware allows extensions known from CBM drives not to appear at the end of

the name. (See the XE+/XE- commands in the documentation.) Hiding extensions is not enabled by

default (so extensions are visible)! When choosing a file name, it is therefore advisable to choose

from the following:

• The filename should be up to 16 characters and should not have an extension
• The filename is up to 12 characters, and can be used with one of the usual CBM extensions

In the latter case, the filename should be specified in the program as “FILENAME*” instead of

“FILENAME.PRG” or “FILENAME”, so that it does not matter whether the user has enabled

hiding of known file extensions. For filenames with lengths of 13 to 16 characters, the visible

extension may exceed 16 characters. Then the CBM name will be the FAT 8+3 character “short”
filename! However, for hidden extensions, the “normal” filename will be the CBM name. Because

of this behaviour, it is advisable to avoid filenames longer than 12 characters (or extensions written

at the end of a FAT filename).

8.7 VCPU extended / “micro” instruction codes

Due to the few resources of the hardware of the most popular SD2IEC drives compatibility with

an old CBM drive is not a goal. Because of this 100% compatibility of the CPU emulation with the

original 6502 is also not required. Support for the “undocumented” instructions is missing for this

very reason but the usability of those instructions is also limited. Because it does not need to be

compatible with an existing hardware it would be useful to implement the additional instructions /

addressing modes of the 65C02 CPU instead of the “undocumented” instructions. The codes of the

VCPU extra instructions has been selected to occupy the places of the unused instructions of the

65C02 CPU so later this processors new instructions / addressing modes can be implemented!

(Currently there is not enough free place for devices with smaller memory.)

25

9 About the sample sources

9.1 The “#”

The VCPU has several new instructions in addition to the original 6502. These instructions

mostly use immediate addressing mode. This addressing mode is marked by “#” in the original

6502 assembler syntax (e.g. #$55), in the previous parts of the documentation these instructions

are also presented this way. Currently there is no assembler supporting VCPU extended

instructions, so a macro definitions source has been created to support using them. However the

assemblers’ macro definitions usually can’t process a parameter which is number (or a label

representing it) and begins with the symbol “#”! For this reason these instructions, defined as

macros the “#” symbol is left out from the parameters. So they are written as

BREAK $00 instead of BREAK #$00

form. But this does not mean that the parameter of these instructions is a (zeropage) address! As all

of the “new” instructions has only one addressing mode this won’t cause a misunderstanding. If in

the future there will be an assembler supporting these instructions directly then the original syntax

using “#” should be implemented but for compatibility reasons the one without the “#” can be

accepted too.

9.2 Supported architectures for the sample programs

The sample programs can be compiled for 4 different architectures. These are VIC20, C64,

C16 / C116 / plus/4 (C264 series) and C128. The KERNAL level programming of these machines

are the same but there are programs which demonstrate the data transfer between the drive and the

computer and these are hardware dependent. The purpose of the samples is rather demonstrate the

SD2IEC + VCPU than the programming of the computer so – to keep it simple – the VCPU sources

are the same for all platforms. This also means that a sample showcasing the data transfer is not

optimal for all platforms! (For example the computer hardware would require different bit order for

every platform). (Ones of) The goal(s) of these samples is to aid the programmer to implement the

optimal data transfer for the chosen platform.

9.3 License for the sample programs

The sample programs are made because they can be helpful. Knowing the “there is no

guarantee for anything, not even basic operations” remark they can be used, wholly or partially

freely, without restrictions.

26

9.4 Description of the sample programs

The sample programs are made to test the VCPU extension functions but they can be useful to

answer questions about programming the device. All of the programs begin with checking the

peripherals of the computer, counting the number of them connected to the serial bus. Then it

searches the SD2IEC drive (when there are more it chooses the last one) and does its tasks with this

drive. The functions of these programs are the following:

• A-DETECT: Prints the long version (“X?”) of the found drive. Check for VCPU support
(“ZI”) and displays the response. After that it prints the number of buffer (“ZB”) and the
current state of the VCPU (“ZC”).

• B-SHOWMEM: Displays the memory handled by the SD2IEC VCPU extension (“ZR”).
• C-PRINTIO: Displays the I/O area visible for the VCPU. This (and the rest of the samples)

requires a program to be downloaded to the drive.
• D-BUTTLED: The two LEDs of the SD2IEC (“BUSY” / “DIRTY”) can be controlled by the

two buttons (“PREV” / “NEXT”). In addition the computer’s CLK / DAT lines also control
these LEDs (C + V and D + F keys). At exit it queries the drive status which requires ATN
activity causing the VCPU to interrupt execution. Because of this the status will display the
matching error code. After this the VCPU state is also displayed.

• E-SR1B-PIO: The computer send 256 BYTEs to the SD2IEC then the drive sends this
packet back to the computer. It checks if it’s the same as it was sent. If they match the
sending begins anew. This test runs until the user exits or there is a comparison mismatch.
The received data is displayed on the screen. This test uses CLK / DAT lines only. DAT is
used for transferring data bits and CLK is used by the computer for timing the transfer. The
VCPU side of the communication is implemented using the I/O registers in the “old
fashioned” way. This transfer mode is not recommended!

• F-SR1B-USR: Data transfer test. The transferred data is the same as the one described for
E-SR1B-PIO. This one also uses CLK / DAT only. The VCPU side implementation uses
USND1 / URCV1 instructions. This is a recommended method!

• G-SR1B-URE: Data transfer test. The transferred data is the same as the one described for
E-SR1B-PIO. This one also uses CLK / DAT only. The VCPU side implementation uses
UDTTA / UATDT instructions. This is a recommended method! The order of the bits on the
DAT line is reversed compared to the previous transfer protocols.

• H-RECVTIME1B: Data receive test, receives and checks a specified number of BYTEs for
every frame. Uses CLK / DAT lines only.

• I-SR2B-PIO: Data transfer test, the two bit equivalent of E-SR1B-PIO. In one step 2
bits are moved on the CLK / DAT lines and the ATN is used for timing. For two bit transfers
using ATN only one drive (in this case the SD2IEC) can be connected to the serial bus of the
computer! The VCPU side of the communication is implemented using the I/O registers.
This transfer mode is not recommended!

• J-SR2B-USR: Data transfer test, the two bit equivalent of F-SR1B-USR. The data transfer
is the same as described for I-SR2B-PIO. The VCPU side implementation uses USND2 /
URCV2 instructions. This is a recommended method!

27

• K-SR2B-URE: Data transfer test, the two bit equivalent of G-SR1B-URE. The VCPU side
implementation uses UCDTA / UATCD instructions. This is a recommended method! The
order of the bits on the DAT line is reversed compared to the previous transfer protocols.

• L-RECVTIME2B: Data receive test, the two bit equivalent of H-RECVTIME1B.
• M-LOADTST1B: File load test. 1 bit data transfer using CLK / DAT lines. There must be an

SD card in the drive with the test file “TSTDAT2M.SEQ” in the current directory. This is a 2
MBYTEs file consisting of random numbers. The test reads this file four times. The
difference between reads are block size (254 or 256 BYTEs) and the presence of checksum
(calculated or skipped). The process measures “time” for reading. (The “time” is the number
of interrupts for the used platform which is ~60 for VIC20 / C64, for (PAL) C16 / C116 /
plus/4 and (PAL) C128 is ~50 per second. If the counted value is divided by this number the
load time can be calculated. The values directly not applicable to compare platforms!

• N-LOADTST2B: File load test. The two bit equivalent of M-LOADTST1B using CLK / DAT
and ATN lines.

• O-DISKIMGS: Disk image handling test. There must be an SD card in the drive with the
“VCPUTSTDSK1.D64” and “VCPUTSTDSK2.D64” disk images in the current directory.
The test enters the first then the second disk images using “CD:...” command. Then reads
the 3-3 files in them with direct sector read commands. It calculates a checksum of the files
which is (among other data) is returned to the computer which displays / checks them.

• P-AUTOSWAP: Disk image handling test. The tests described for O-DISKIMGS will be
processed but the disk change is performed using the “AUTOSWAP.LST” file. (This one is
also required in the current directory of the SD card besides the disk images).

• Q-BENCHMARK: File read speed test. The VCPU test program reads the
“TSTDAT2M.SEQ” test file used by the load tests using drive firmware and the computer
measures the read “time”. It repeats this with both 254 and 256 BYTEs block size. This test
is used for testing the “raw” file read performance of the drive! The measured “time” is
calculated in the same way as for file load tests.

• R-LSTRESSTST: From the SD2IEC side, a “stress test” of the serial lines. It can be used to
detect certain types of hardware faults.

• Y-LINEDIAG: Test of the serial lines’ state from the SD2IEC side. Diagnostics program,
may be removed in the future!

• Z-VCPUCTST: Test for the VCPU core. Checks for running the emulated 6502 instructions.
Not a full, “comprehensive” test! Currently all (original 6502 and extended) instructions are
run / tested with at least one addressing mode. (“Micro” instructions are not tested here,
most of them are tested in the data transfer tests.) The occasional VCPU instruction errors
may get a dedicated test in this program together with their fixes.

28

10 Known bugs
• VCPU program execution allows only from RAM area! But address of the instruction to be

executed is checked only for unconditional jumps. This can cause that during a simple
program execution the PC can run out of the area designated as RAM. Additionally the
conditional jumps can lead to jumping out of allowed memory range. In these cases the
operation is “undefined”. Write to an invalid memory address is not executed (just like in
case of normal program execution) so this does not affect normal operation of the drive
firmware. System function calls ($00: BREAK code) from these invalid addresses are also
not executed.

• The traditional interrupt handling is missing! Instead of that there are several events that
interrupt VCPU program execution (such event is for example removal of the SD Card).
These events are not checked after execution of every instruction just after the ones that
allow creating program loops. (These are typically the jump / wait “micro” instructions.)
Because of this the program is not interrupted when the event is happening but after one of
the following jump instructions! In these cases the VCPU status query value of PC won’t
reflect the actual instruction when the event happened.

• Execution time of instructions accessing the I/O area depends on the address of the register.
Accessing the same register mostly takes the same time, independently of the written / read
data.

• The binary → decimal converter peripheral converts binary values to decimal / ASCII digits
using simple cycles so execution time (only for write this I/O registers) depends on the value
to be converted!

• Execution times for the original 6502 instructions are not defined (with several exceptions).
Possible optimizations can change them in the future!

29

Table of contents
1 Features..2

1.1 Goals..2
1.2 Differences compared to programming the original Commodore drives..................................3
1.3 License...3

2 Commands available for the computer..4
2.1 “ZI”: Query VCPU information...4
2.2 “ZB”: Query data buffer state..5
2.3 “ZR”+ADDRLO+ADDRHI+LENGTH: Read data buffers as memory...................................5
2.4 “ZW”+ADDRLO+ADDRHI+BYTE1+…: Write data buffers as memory..............................5
2.5 “ZE”+ADDRLO+ADDRHI+…: Execute program using VCPU...6
2.6 “ZC”: Query VCPU state...6

3 The VCPU...7
3.1 Major differences...7
3.2 VCPU extended functions..7
3.3 Memory map for the emulated 6502..8
3.4 I/O registers..8

4 CBM serial bus..10
4.1 Hardware..10
4.2 Software...10
4.3 Lines...11

5 VCPU instruction set...12
5.1 Instructions of the extended functions...12
5.2 Serial bus handling “micro” instructions...13
5.3 Call drive firmware functions..18

6 System calls...18
6.1 Codes of system calls...19
6.2 Description of system calls..19

7 VCPU program execution error handling..22
8 Remarks...23

8.1 1 bit / 2 bits..23
8.2 Buffers / memory...23
8.3 “Command channel” and “error channel” as memory...24
8.4 Disk images / Directories...24
8.5 Storage speed...24
8.6 Filenames...24
8.7 VCPU extended / “micro” instruction codes...25

9 About the sample sources..26
9.1 The “#”...26
9.2 Supported architectures for the sample programs..26
9.3 License for the sample programs...26
9.4 Description of the sample programs..27

10 Known bugs...29

Change log:
221002: First public release
230326: This→Those, Introduction→Features list, Extend VCPU bus-types, OPEN / $FF, Channels+memory chapter, Filenames chapter, ZI

extension, remove BTASC instruction, Binary→decimal converter peripheral, I/O register table + extension, PHA+PLA, documentation version
corresponds to the firmware version

230404: Spelling correction
230610: Spelling correction, R-LSTRESSTST added

30

	1 Features
	1.1 Goals
	1.2 Differences compared to programming the original Commodore drives
	1.3 License

	2 Commands available for the computer
	2.1 “ZI”: Query VCPU information
	2.2 “ZB”: Query data buffer state
	2.3 “ZR”+ADDRLO+ADDRHI+LENGTH: Read data buffers as memory
	2.4 “ZW”+ADDRLO+ADDRHI+BYTE1+…: Write data buffers as memory
	2.5 “ZE”+ADDRLO+ADDRHI+…: Execute program using VCPU
	2.6 “ZC”: Query VCPU state

	3 The VCPU
	3.1 Major differences
	3.2 VCPU extended functions
	3.3 Memory map for the emulated 6502
	3.4 I/O registers

	4 CBM serial bus
	4.1 Hardware
	4.2 Software
	4.3 Lines

	5 VCPU instruction set
	5.1 Instructions of the extended functions
	5.2 Serial bus handling “micro” instructions
	5.3 Call drive firmware functions

	6 System calls
	6.1 Codes of system calls
	6.2 Description of system calls

	7 VCPU program execution error handling
	8 Remarks
	8.1 1 bit / 2 bits
	8.2 Buffers / memory
	8.3 “Command channel” and “error channel” as memory
	8.4 Disk images / Directories
	8.5 Storage speed
	8.6 Filenames
	8.7 VCPU extended / “micro” instruction codes

	9 About the sample sources
	9.1 The “#”
	9.2 Supported architectures for the sample programs
	9.3 License for the sample programs
	9.4 Description of the sample programs

	10 Known bugs

