
NST's Monitor Extension V7.02

Overview:

– Expands the features of the built-in TEDMON
– Handles "illegal codes"
– Scrolls screen in both directions
– Disk drive memory management
– Disk block management
– Clear Memory Function
– Etc.

Usage:

The expansion (BMX from now on) can be placed into lower half of any ROM-BANK, the
simplest solution is probably replacing the built-in extra software (which was already outdated even
at the time of release). It is easiest to try it with an emulator, e.g. YAPE
(http://yape.homeserver.hu/) or plus4emu (http://plus4emu.sourceforge.net/). In these, BMX ROM
should be loaded to FUNCTION-LO, C1L or C2L, the other half (FUNCTION-HI, C1H, C2H)
should be left blank.

On the original machine the simplest solution is to replace the 3-plus-1, the correctly
programmed (E)EPROM (e.g. 27(C)128) should be put in its place. The original line-up looks like
this:

These ICs contain (from left to right) BASIC, KERNAL, FUNCTION-LO and
FUNCTION-HI, they are ROMs. (The fifth IC (labeled 251641-02) is the FPLA, ignore it for now.)

http://yape.homeserver.hu/
http://plus4emu.sourceforge.net/

From the original ROMs the two that should be removed from the sockets are U25 (labeled
317053-01) and U26 (labeled 317054-01), and then the properly programmed (E)EPROM should
be inserted to U25 socket:

The U26 is left blank (for now). The BMX is ready to go once the machine is assembled,
there's nothing else to be done.

Compatibility:

Compatibility is an important aspect of the system, in general, using the extension is not a
problem. The only problem that usually arises is one that will almost always happen to anyone who
never used this type of expansion before. This stems from a faulty programming habit that was –
probably – spread by the "Machine Language Programming for Beginners and Experts" (which
is otherwise a very informative and appreciated) book:

"(Since we rarely write new IRQ routines in expansion ROMs, in practice JMP $FCC3 can always be used.)"

This part in parentheses is the source of the problem. If the interrupt routine ends at $FCC3,
then it will fail to restore the ROM-BANKs that were in used at the point of interrupt. As BMX is in
another ROM BANK, when the interrupt routine does not switch back to it, the execution will
continue in the BASIC ROM, which will result in a crash. If you need to extend the ROM interrupt,
then you MUST complete the routine by jumping to $FCBE instead of $FCC3.

In terms of memory usage, the extension attemps to be "minimalistic"; the only memory areas
that were used by the original TEDMON are used. Exceptions: a few routines that are required by
the extension are copied to $0123 (for paging, etc.). Overwriting these routines will cause the
extension to crash, if this memory area is needed, BMX can be turned off. By default, to enter
TEDMON commands, a buffer is used, this can be found between $0200..$02FF. BMX only uses
the area between $0200..$0257 (just like the BASIC interpreter), this means an 80-character long
space, this is sufficient even for the most complex MONITOR commands. This area is also used as
a memory buffer during operations, so modifying/overwriting it directly is not recommended.

Features:

During power-on or reset some keys can be held down to control certain features:

– Pressing Control + Space + Clear/Home buttons at the same time will clear the memory
– Pressing 2 will switch BMX off, and it will stay off
– Pressing 1 will switch BMX back on, and it will stay on
– Pressing Run/Stop will start the monitor (just like the default)

The switched on state of BMX is indicated by the change border and the background, which
will be set to lower luminance level. The "off" state is stored in the memory at $0123 (which is the
"top" of the stack), on that address $44 ("D" as Disabled) is stored. If that value is found, then the
BMX initialization routine returns as if nothing was done. In this case, it does not take over the
implementation of RESET. (The paging routines use the same memory area. From a compatibility
point of view, it would be preferable to have some hardware support, but that cannot be achieved
with a simple ROM BANK exchange. In emulators, toggling ROMs is easier, but it's not
convenient.)

The MONITOR commands extend the functionality of the original TEDMON commands, if
BMX cannot process something, it will hand it over to the original ROM. In the documentation
only the commands which are new or have expanded functionality are listed.

The command which list the contents of memory to the screen in some way will also work in
"scroll" mode. If the cursor is at the bottom line of the screen (or at the bottom of the set window),
then pressing cursor DOWN will list new lines. The same is true going upwards, at the top of the
screen (or window), pressing the UP button will move the list backwards. If needed, this feature can
be disabled.

The names of commands – unlike in the original TEDMON – can be more than one character
long. The multi-character names can be shortened just like BASIC commands. (Thus pressing by
the second or subsequent characters with SHIFT, the others may be omitted.)

All numeric parameters must be entered as a hexadecimal value. (Exceptions will be noted.)
Parameters can be separated by space or comma, the same way as in TEDMON.

The MONITOR's (extended) commands:

HELP:

Gives help. Without a parameter it displays the list of all available commands, with a
command parameter it will list the help for the specified command. (Since this text takes up quite a
lot of space, in the future the "explanatory" function may be left out.)

KILL:

Turn off various functions of BMX. Without a parameter, all functions are turned off, and the
"off" state is set. (They won't be restarted after reset, you will need to press correct key combination
to turn it back on!). With the M parameter the monitor extensions are turned off, but these will be
restored after RESET.

GRAPHIC:

The TED's with graphic mode can be switched on/off. Without a parameter it switches to the
default character mode. The first parameter is the number of the graphics mode (same as in BASIC,
0, 1, 2, 3, 4), the second parameter is a bitmap address (0000, 2000, 4000, 6000, 8000, A000, C000,
E000, or the short version of these, 00, 20, 40, 60, 80, A0, C0, E0 can also be used), the third
parameter is the address of the color memory (this can be 0000, 0800, 1000, ... or the short version
00, 08, 10, ...).

DIRECTORY:

List the contents of the disk in the drive. Without a parameter it will use the aldeady set
(default 8) drive's unit / disk 0 to list. To use a different drive number, use the Ux form. (For
example, drive 9 is U9, drive 10 is UA (!).) To get a listing of disk 1 (which of course is only useful
for drives that are capable of handling two discs), the D1 parameter must be specified. (The original
BASIC DIRECTORY command does not handle the number of disk. It is syntactically evaluated,
it's not sent to the drive, so this parameter doesn't matter. The DIRECTORY command in BMX
handles this correctly.) This command can take a name parameter as well, if provided, this
parameter must be the first one. The name may contain the "?" and/or "*" characters, only the files
matching the pattern will be listed. (Works the same way as the BASIC DIRECTORY command.)

UNIT:

With this command, the default drive's unit number can be set. Without a parameter it shows
the current unit number (default 8). If a parameter is passed in, it will set the unit number. After
setting the drive number, all commands, which handles the drive in any way will use this drive unit
number. (The unit number is a HEX value, so for drive 10 the parameter should be A!)

TM:

Call a TEDMON function. Whatever is after the "TM" command will be evaluated and
executed by the built-in TEDMON. (If you need to some factory default function, this can be
achieved with this command.)

TDISK:

Move data from the computer's memory to the selected (default 8) drive's memory. The source
is always the plus/4's RAM, the destination is the selected drive's RAM (or other areas). In the case
of the 1541-II, writing to $8000..$FFFF is not recommended! The first parameter is the start
address, the second is the end address, this are will be copied. The third parameter is the starting
address of the drive's memory, this is where the data will be written to.

FDISK:

The opposite of the previous command, moves data from the drive's memory to the memory
of the plus/4 . The first parameter is the start address, the second is the end address, this are of the
drive's memory will be copied. The third parameter is the start address in the plus/4's memory, the
data which is read from the drive will be written there.

@:

Get the status of the selected drive (default 8), or send a command. Without a parameter the
drive's condition will be queries, when parameters are present, they are sent to the drive's command
channel. (For example, "@N:DISK,XY" will start formatting the disk with name "DISK", ID
"XY". "@I" will perform a disk initialization, etc.)

*R:

Read a sector from the selected drive (default 8) to the plus/4's memory. First parameter is the
TRACK, second parameter is the SECTOR, and third is the machine's memory address. The
memory address must always end in $00, so 1234 cannot be used, in that case, $1200.. $12FF range
will be used. (The memory address can be specified in "short" mode, specifying 12 will mean
$1200..$12FF will be the target.) All parameters are of course HEX values! (For example, the disk's
BAM sector can be read with the "*R 12 00 1200" command, to the $1200..$12FF area. This is
track 18, sector 0.)

*W:

One sector of the selected drive (default 8) can be written with this command. Without any
parameters, the sector which was previously read by the "*R" command will be written to the same
location from where it was read from. If there are parameters, they must be target TRACK and
SECTOR, specified the same was as in the "*R" command.

O:

The configuration of the MONITOR. The TEDMON knows only one such parameter,
switching between the ROM/RAM. This is set by bit 7 of the byte at $07F8. BMX also uses the
same byte, but the other bits are in use as well, therefore it's manually changing that address is not
recommended. (B7 still serves to switch the ROM/RAM, so the ">07F8 80" command works as
expected. However, ">07F8 FF" will turn on other things and therefore it will probably cause
unexpected results!) Without parameters, it displays the currently selected configuration. The
parameter can be specified as follows:

– 0..F: Enabled access to the specified ROM BANK. So not only the built in
BASIC+KERNAL can be read, but also the expansion ROMs as well (including BMX
itself)! Writing the ROM-BANK's number to $FB (which is what the TEDMON used to
read the other BANKs lower half) can no longer be done, because BMX does paging
actively, this address is often overwritten.

– R: Reading the RAM can be turned on with this option. To return to reading the ROM,
specify one of the BANKs from 0..F (preferably 0).

– Z: Access the drive's memory. From then on, ALL commands are accessing the DRIVE'S
MEMORY! (To the user it appears as if the drive's memory is the machine's, as if the drive
itself would be running the MONITOR program.) The exceptions are the "G" command
(there's a separate command for starting a program in the drive's memory), and all other
commands which are designed for moving data between the drive and the machine. All
other commands however ("A", "D", "M", ">", ...) are working in the drive's memory. In the
case of the 1541-II, the memory area beteen $8000..$FFFF should not be written! To switch
back to the machine's memory use the R (RAM) or the 0..F (ROM) parameters.

– I: Turn handling illegal codes on/off. When turned on, not only displaying them ("D"
command), but also the inputting them ("A" command) is allowed!

– S: Turns the scroll function off/on.

G:

Start program, same as the TEDMON "G" command. Without a parameter, it runs from the
saved address, if a parameter is specified, it runs from that address. Addresses between
$8000..$FFFF will run the ROM! Before starting, the saved register values will be set. (These may
be viewed with the "R" TEDMON command).

GR:

Same as the "plain" "G" command, but before the start interrupts will be disabled, and RAM
will be paged. RAM will be started even in the $8000..$FFFF range. Without a parameter it start
from the saved address, with a parameter it starts from the specified address. The registers will be
set before start here as well!

GZ:

Start a program in the drive's memory. (This, of course, will run on the drive's processor.) You
must always enter an address for this command, and the registers will not be set, since the DOS
does not allow this.

D:

Disassemble the memory; decode the memory and display the mnemonics and the associated
parameters. The parameters can be empty, or a start and end address can be provided. If the illegal
codes option is enabled, they are also shown. The list may be the scrolled up/down with the cursor
keys (just like other list), going down is straightforward. When going up, we have to move
backwards in the memory, which is not always obvious. MISTAKES MAY OCCUR, but in most
cases the function works well.

A / . / ,:

Assemble, the entered mnemonics and parameters will be translated to machine code and
stored in the memory. (All three commands perform the same function.) If the illegal codes option
is enabled, those can also be entered. Unlike in the TEDMON, even the disassembled code column
(produced with the "D" command) can be modified - with certain restrictions. (For example,
changing the address of a parameter will update the address of the memory.)

M:

Displays the memory contents in HEX values and ASCII/PETSCII characters. Same as the
TEDMON "M" command, except that bit 7 of the ASCII/PETSCII characters isn't cut off. The
parameters can be nothing, or start and end addresses.

>:

The memory contents can be edited as HEX values. The first parameter must be a memory
address, followed by 0..8 bytes, which will be written into the memory. After that, the "ready" line
(8 bytes) will be printed the same way as the the "M" command does. If only the address is given,
nothing is written to the memory, but the eight bytes of data is displayed on the screen.

I:

The memory contents can be displayed as CHARACTER CODES. (So for example, if the
memory contains $01, the screen will display the letter "A". Not ASCII/PETSCII code, but the
screen code!) 32 characters per line are displayed. The parameter can nothing, or start and end
address.

':

Edit the data that was written to the screen by the "I" command. After the address, up to 32
characters can be entered, which will be stored in the memory as character codes. The address
parameter is mandatory, after that 0..32 characters can be entered. After writing to the memory type
(if there was data given), the 32 characters will be printed.

E:

Display the memory in "binary" mode. (For example, the "E D000" command will display the
character set from the ROM.) Zero bits will be shown as ".", ones will be shown as "*". Each line
displays 8 bits of one byte. The parameter can be empty, or a start and end address can be given.

[:

Edit the binary data that was written to the screen by the "E" command. The address
parameter is given, then it will display that memory location's contents. To modify the memory, all
8 bits must be specified. The bits must be "." and "*", "0" and "1" are also acceptable. The final
result will be printed with "."/"*".

F:

Fill the memory with data. The parameters should be the start and end addresses, as well as
the data that will be written to the memory. Unlike TEDMON, it can take more than byte (up to
32), and "strings" are also accepted.

T:

Moves memory contents. Three parameters are needed: the start and end address, and the new
destination address to which the memory contents to be moved. Unlike TEDMON, the data is
always copied in the correct direction, therefore it works well even in cases of overlapping
addresses.

C:

Comparison of memory contents. Three parameters are needed: start and end address, and the
new destination address. The memory between the start and end address will be compared to the
area start from the destination address, and the addresses of the differences will be printed. The
comparison can be stopped by pressing Run/Stop.

H:

Search the memory for BYTEs. Three (or more) parameters are expected: start and end
address, between which the data will be searched, and at least one (max. 32) bytes of data, which
you are looking for. Unlike TEDMON, "strings" in double quotes are also accepted. Pressing
Run/Stop will stop the search.

$:

Converting a HEX number to "all other formats". It expects a hexadecimal number as the
parameter (up to 4 digits), which will be displayed in other forms. Without a parameter, it lists the
contents of the currently selected disk drive, or if Ux parameter is given then the x drive's contents.

%:

Convert a BINARY number to "all other formats". It expects a binary number as the
parameter (up to 16 digits), which wil be displayed in other forms.

#:

Convert a decimal number to "all other formats" It expects a decimal number (0..65535),
which will be displayed in other forms.

LA:

Displays the file's start and end address. The first parameter should be the file's name in
quotes, followed by the unit number. It will read the entire file, display the start address and the
calculated end address. The file is NOT loaded into memory. Requires a disk drive!

L:

Load the file into memory. Without a parameter, it loads the first file from device 1 (tape).
The first parameter can be a file name in quotes, in this case it will attempt to load the file from the
same place. The second parameter can be the device number, in this case it loads the given file from
the given device. (E.g.: L "NAME",8 will load a file called "NAME" from the disk drive.) So far
this works exactly like the TEDMON, the files will be loaded back to their originally saved address
(same as the BASIC LOAD "NAME",8,1 command). However, a third parameter can be a new
memory address, the file will be loaded to that address. These functions will call the KERNAL
LOAD routine, therefore if a "turbo loader" is used, it will work for this command as well.
Optionally a fourth parameter can be give, if specificed, that many bytes from the beginning of the
file will be "skipped", and won't be loaded. Additional, an optional fifth parameter can be specified,
this will determine the total number of bytes loaded. The last two parameters require a disk drive!
The disk drive does not support the SEEK function, therefore the skipped data will be "loaded", but
not stored. The number of skipped bytes should NOT include the file's load address (which are the
actual two bytes in the file). The KERNAL LOAD routines do not support these functions, they
were written by scratch. Therefore any optional "turbo loaders" will not work.

V:

Verify the file (compare the file with the memory contents). The possible parameters are the
same as the "L" commands, all functions described there will work the same. The only difference is,
the file contents will not be loaded into the memory, it's only used for comparison. In case of any
differences, "VERIFY ERROR" will be displayed.

S:

Save file. The first parameter should be the name in quotes, the memory contents will be
saved with this name. The second parameter must be the device number, the file will be saved to the
given device. The third and fourth parameters should be the start and end addresses, this is the
memory area that will be saved. The byte on the end address will NOT BE SAVED! This function
works the same as the TEDMON's "S" command, and uses the KERNAL SAVE routine. Therefore
any optional "turbo savers" will work as expected. An optional fifth parameter can be given, if
provided, the file will be saved with this address as the load address. This function requires a disk
drive! Since the KERNAL SAVE routine does not support changing the load address, this function
was written from scratch. Consequently any used "turbo savers" will not work.

X:

Exit monitor to the BASIC prompt. Same function as the TEDMON "X" command.

While working, the file handling commands ("LA", "L", "V", "S") may display some data
related to the files or to the current operation. This data may include the following information:

– OS: Original start address
– SK: Number of skipped bytes
– MX: Maximum possible number of bytes to be loaded
– S: Start address, the file will be loaded from this address into the memory
– E: End address, the last byte into which data was loaded
– U: The first unused byte where no data was loaded (one byte higher than the end address,

this was the end address during save!)
– C: Byte count, this many total bytes were loaded

The commands that run for a long time without printing anything onscreen ("TDISK", "FDISK",
"F", "T", "C", "H", "LA", as well as the extra functions of "L", "V", "S") now have a simple visual
feedback display. All of these commands may be interrupted by pressing the Run/Stop key.

WARNING: USE AT YOUR OWN RISK! THERE ARE NO
WARRANTIES OF ANY KIND! (Any bug reports are welcome.)

WARNING: EXTENDED USE MAY BE ADDICTIVE!

 ©2013-2014, BSZ

Translated by Csabo / www.plus4world.com

2013.11.26. First public version of the documentation
2014.01.19. V7.02 - ROM-BANKs, scrolling, DIRECTORY, LA, L, V, S, "working feedback"

http://www.plus4world.com/

