
 NST's Audio Extension V2.0 ©2011

 (Manual V1.0, 2011.09.10.)
Translated by Levente Hársfalvi

 Features:

– 3.5mm audio jack
– ~C64 compatible joystick port
– AMIGA mouse support
– 8580 SID support ("new" SID; chip not included)
– DigiBlaster playback emulation (8-bit D/A)
– "SID Reset" button for "legacy C64" mode
– Standard SID base addresses ($FD40, $FE80), with $D400 as option
– Standard Plus/4 clock (886kHz), with PAL C64 clock (985kHz) as option
– ”Configurable analog signal path”™
– And a lot more...

 The hardware

 The card supports "new" SIDs only (8580 and 6582)! You cannot use 6581 (old) SIDs (they
wouldn't blow up, but they won't play any sound either...). Pin 1 of the chip is marked on the board
("Pin1" tag, next to the corner of the SID socket near the 3.5mm audio jack connector). Inserting
the SID chip in the wrong orientation will damage both the SID chip and the card!

 The SID chip needs to be inserted the following way:

 You have to pay attention that all pins slide into the contacts, none of the pins should bend or
break. (That precaution might be especially important if some pins of the SID are already slightly
bent, due to the chip having been used elsewhere, prior to installing it on the card. Using small
tweezers may help here a lot. Don't apply unreasonably high force, try positioning the pins so that
they'd go into the holes, and take care that none of the pins get bent while pushing the chip into the
socket).

 WARNING! You are not supposed to attempt to power the card up without a SID chip
installed!

 There are 3 blue jumpers on the card (J1, J2, J3) determining how the sound signals of the SID and
the TED would be routed. By default, all jumpers are in 1-2 position, like this:

 With this setting, the sound output of the SID will appear on the A/V output of the Plus/4 (ie. the
"Video" socket), mixed together with the TEDs sound. (Note: the SID sound should also be audible
on the TV if you're using an RF connection). If headphones or an amp is connected to the 3.5mm
socket, the SIDs sound signal path will be cut at this point – ie. with headphones or an amp
connected, the Plus/4 A/V socket and optionally the RF out will no longer have the SIDs sound.

 This is the default, recommended configuration.

 Optionally, it is possible to do the opposite, ie. mix the TEDs sound into the 3.5mm audio socket.
For that, move J2 and J3 to position ”2-3”, like this:

 In that case, both the SIDs and TEDs sound appear, mixed, at the audio jack socket.
ATTENTION: J2 and J3 needs to be moved together, don't attempt to use the other, physically
possible combinations!

 If J2 and J3 are set "2-3", like the above, then the two signal sources (the SID and the TED) can be
set further "apart" using J1; that is, the SIDs sound will appear on one, and the TEDs at the other
side of the stereo signal. This one would look like this:

 In this mode, you can play sounds in stereo on the Plus/4. (I wouldn't encourage anyone to make
noise that way, though; yet, the possibility is there.)

 There's yet one more, red jumper on the card, on the 1-2 pins of the "AuIn" connector. Pin 2 is
basically the Ext Audio input of the SID chip. Pin 1 is the output of the emulated DigiBlaster audio
playback. Pin 3 is GND. The jumper can be moved to 2-3 if DigiBlaster emulation is not needed.
(Like this:)

(The D/A here is a "cheap" component that might carry in some noise even if it's not being used;
this noise can also be get rid of like this, if it disturbs).

This jumper can also be taken advantage of if the SIDs Ext Audio is needed for some purpose. For
that, the jumper has to be removed, and the audio signal be connected to pins 2 and 3 (pin2: signal,
pin3: GND) of the header. Pay attention to the fact that this point is absolutely unprotected.
According to SID specs, the maximum level that can be fed to the SIDs input is 1 Vpp. The SID
isn't a typically robust, forgiving device, you can make damages to the chip pretty easily, so only
use this possibility if you really know what you're doing!

 Messing around with analog audio signals generally leads to some loss of audio quality. All
settings but the default one imposes some extra routing of analog sound signals. Consequently, the
suggested configuration is the default one. For best performance, the SIDs sound should be taken
from the audio jack, and the TEDs sound from the A/V socket.

 There's a button on the card ("SRST", ie. Sid ReSeT). This button has two functions:

– The SID can be reset, if access to the SID in the $D400 – $D41F area has been enabled.
– If the button is kept pressed while the Reset button of the Plus/4 is released,

"Legacy C64 mode" is activated (SID access at $D400 – $D41F is enabled, and the SID is
clocked at 985kHz).

 It's suggested that you use this "Legacy C64 mode" together with connecting an amplifier or a pair
of headphones to the audio jack socket of the card. In that case, a great number of Plus/4 demos will
play SID sound (and only SID sound) even if they weren't originally designed with SID support in
mind at all (due to original C64 sound routines playing somewhere deep in these programs); whilst
the TEDs sound (that is, the "converted" sound) will be absent.

 There's a C64 compatible joystick port on the card. You can connect a C64 compatible joystick, a
1350/1351 (or compatible) mouse, or optionally an Amiga mouse here. C64 lightpens aren't
supported; these would be handled by the VIC-II directly, which is absent here (...and lightpens
won't work with todays TFT-LCDs anyway).

 The software

 The SID can be accessed at $FD40 – $FD5F, which is the "default" address map. By default, the
map is also mirrored at $FE80 – $FE9F (backwards compatibility to Csory's SID card), which can
be disabled. Optionally, a mirror for write access of the SID registers can be enabled for the
$D400 – $D41F address range ("Legacy C64 mode", disabled by default).

 The original DigiBlaster extension features an 8-bit A/D converter that can be used for digitizing
sounds. This A/D converter has not been implemented on the card. The D/A converter feature
(replay of 8-bit samples), however, has been implemented. The D/A register is mapped to an unused
address of the SID address map, $1E ($FD5E or $FE9E). (The A/D converter, if implemented,
would map to address $1F). The output of the D/A is fed to the "Ext Audio" input of the SID, ie.
passes through the SID; as a consequence, the volume setting of the SID also affects the volume
level of the sample playback of the DigiBlaster, and the DigiBlasters sound can also be filtered
using the SIDs programmable filters. As another consequence, DigiBlaster sample playback also
cannot be used without a SID chip installed.

 The card's own, specific registers reside in the $FD80 – $FD8F range, which is originally assigned
to the joystick port in Solder's SID card (there, the single joystick input register is mirrored 16
times). For compatibility, the original behaviour can also be set. By default, here, the 16 registers
play different roles.

 SID registers (summary):

Addr. I/O B7 B6 B5 B4 B3 B2 B1 B0
$FD40
$FE80

Write only
Channel 1 Freq 7 Freq 6 Freq 5 Freq 4 Freq 3 Freq 2 Freq 1 Freq 0

$FD41
$FE81

Write only
Channel 1 Freq 15 Freq 14 Freq 13 Freq 12 Freq 11 Freq 10 Freq 9 Freq 8

$FD42
$FE82

Write only
Channel 1 PW 7 PW 6 PW 5 PW 4 PW 3 PW 2 PW 1 PW 0

$FD43
$FE83

Write only
Channel 1 - - - - PW 11 PW 10 PW 9 PW 8

$FD44
$FE84

Write only
Channel 1 Noise Pulse Sawtooth Triangle Test RingMod Sync Gate

$FD45
$FE85

Write only
Channel 1 Attack 3 Attack 2 Attack 1 Attack 0 Decay 3 Decay 2 Decay 1 Decay 0

$FD46
$FE86

Write only
Channel 1 Sustain 3 Sustain 2 Sustain 1 Sustain 0 Release 3 Release 2 Release 1 Release 0

$FD47
$FE87

Write only
Channel 2

Freq 7 Freq 6 Freq 5 Freq 4 Freq 3 Freq 2 Freq 1 Freq 0

$FD48
$FE88

Write only
Channel 2

Freq 15 Freq 14 Freq 13 Freq 12 Freq 11 Freq 10 Freq 9 Freq 8

$FD49
$FE89

Write only
Channel 2

PW 7 PW 6 PW 5 PW 4 PW 3 PW 2 PW 1 PW 0

$FD4A
$FE8A

Write only
Channel 2

- - - - PW 11 PW 10 PW 9 PW 8

$FD4B
$FE8B

Write only
Channel 2

Noise Pulse Sawtooth Triangle Test RingMod Sync Gate

$FD4C
$FE8C

Write only
Channel 2

Attack 3 Attack 2 Attack 1 Attack 0 Decay 3 Decay 2 Decay 1 Decay 0

$FD4D
$FE8D

Write only
Channel 2

Sustain 3 Sustain 2 Sustain 1 Sustain 0 Release 3 Release 2 Release 1 Release 0

$FD4E
$FE8E

Write only
Channel 3

Freq 7 Freq 6 Freq 5 Freq 4 Freq 3 Freq 2 Freq 1 Freq 0

$FD4F
$FE8F

Write only
Channel 3

Freq 15 Freq 14 Freq 13 Freq 12 Freq 11 Freq 10 Freq 9 Freq 8

$FD50
$FE90

Write only
Channel 3

PW 7 PW 6 PW 5 PW 4 PW 3 PW 2 PW 1 PW 0

$FD51
$FE91

Write only
Channel 3

- - - - PW 11 PW 10 PW 9 PW 8

$FD52
$FE92

Write only
Channel 3

Noise Pulse Sawtooth Triangle Test RingMod Sync Gate

$FD53
$FE93

Write only
Channel 3

Attack 3 Attack 2 Attack 1 Attack 0 Decay 3 Decay 2 Decay 1 Decay 0

$FD54
$FE94

Write only
Channel 3

Sustain 3 Sustain 2 Sustain 1 Sustain 0 Release 3 Release 2 Release 1 Release 0

$FD55
$FE95

Write only
Filter - - - - - FC2 FC1 FC0

$FD56
$FE96

Write only
Filter FC10 FC9 FC8 FC7 FC6 FC5 FC4 FC3

$FD57
$FE97

Write only
Filter Res 3 Res 2 Res 1 Res 0 Filt ExIn Filt Ch3 Filt Ch2 Filt Ch1

$FD58
$FE98

Write only
Filter Ch3 Off HP BP LP Vol 3 Vol 2 Vol 1 Vol 0

$FD59
$FE99

Read Only
PotX PotX 7 PotX 6 PotX 5 PotX 4 PotX 3 PotX 2 PotX 1 PotX 0

$FD5A
$FE9A

Read Only
PotY PotY 7 PotY 6 PotY 5 PotY 4 PotY 3 PotY 2 PotY 1 PotY 0

$FD5B
$FE9B

Read Only
OSC3/Rnd Osc3 7 Osc3 6 Osc3 5 Osc3 4 Osc3 3 Osc3 2 Osc3 1 Osc3 0

$FD5C
$FE9C

Read Only
ENV3 Env3 7 Env3 6 Env3 5 Env3 4 Env3 3 Env3 2 Env3 1 Env3 0

$FD5D
$FE9D

N/A - - - - - - - -
$FD5E
$FE9E

Write only
DigiBlaster D/A B7 D/A B6 D/A B5 D/A B4 D/A B3 D/A B2 D/A B1 D/A B0

$FD5F
$FE9F

N/A - - - - - - - -

 SID registers (there are a lot of documents dealing with SID details around the net, so this is a
summary):

$FD40/$FD41 (channel 1):
$FD47/$FD48 (channel 2):
$FD4E/$FD4F (channel 3):
 Frequency of the channel (16 bit, write only)

 Freq determines the frequency that the selected waveform of the channel will play. The higher the
number, the higher the pitch of the sound.

$FD42/$FD43 (channel 1):
$FD49/$FD4A (channel 2):
$FD50/$FD51 (channel 3):
 Pulse width of the square waveform in percents (12 bit, write only)

 PW 0..11 determine pulse width. Value is valid between $000 – $FFF (bits 12-15 are unused).
$800 results in a 50% square wave. Only valid for square waveform.

$FD44 (channel 1):
$FD4B (channel 2):
$FD52 (channel 3):
 Channel control register (write only)

 B7: Noise bit: Select noise waveform
 B6: Pulse bit: Select square waveform
 B5: Sawtooth bit: Select sawtooth waveform
 B4: Triangle bit: Select triangle waveform
 B3: Test bit
 B2: RingMod bit: Turn on ring modulation
 B1: Sync bit
 B0: Gate bit: 1 starts attack phase of ADSR generator, 0 starts release

 More than one of B7 – B4 can be turned on at the same time (but not all combinations would result
in audible sound).

$FD45/$FD46 (channel 1):
$FD4C/$FD4D (channel 2):
$FD53/$FD54 (channel 3):
 ADSR generator parameters (write only)

 The registers hold four 4-bit parameters: attack, decay, sustain, release. Having turned the Gate bit
on in the control register, the volume of the respective channel rises up to maximum with "attack"
rate, then drops with "decay" rate until the volume level set by "sustain" is reached. Resetting the
Gate bit lets the volume level drop to 0 with "release" rate.

$FD55/$FD56:
 Cutoff frequency of the programmable multimode filter (write only)

 Bits B7-B3 of $FD55 are unused.

$FD57:
 Filter control bits and resonance (write only)

 B7 – B4: Filter resonance
 B3: Filter ExIn: Route external input signal through the filter
 B2: Filter Ch3: Route channel 3 through the filter
 B1: Filter Ch2: Route channel 2 through the filter
 B0: Filter Ch1: Route channel 1 through the filter

$FD58:
 Filter mode and master volume (write only)

 B7: Channel 3 off bit: If 1, channel 3 is muted
 B6: HP bit: Select high pass filter
 B5: BP bit: Select bandpass filter
 B4: LP bit: Select low pass filter
 B3 – B0: master volume

$FD59/$FD5A:
 Paddle inputs (read only)

 The input registers of the two single-slope A/D converters of the SID.

$FD5B:
 Channel 3 wave value (read only)

 This is the current value of Channel 3 (ie. the upper 8 bits of the digital value currently held by the
waveform generator). It can be used e.g. as a random number generator if noise waveform is set.

$FD5C:
 Channel 3 ADSR generator value (read only)

Current volume level of Channel 3 (ie. the current value of the volume counter of the ADSR
generator of Channel 3)

$FD5D:
 Unused

$FD5E:
 DigiBlaster D/A (write only)

 This register isn't implemented in the SID. The D/A register of the DigiBlaster is mapped to this
address. The output of the D/A is routed through the SID. Because of that, the DigiBlasters sound is
only audible if the master volume of the SID is non-zero.

$FD5F:
 Unused

 The card's specific registers reside in the $FD80 – $FD8F range.

 Register map (summary):

Addr. I/O B7 B6 B5 B4 B3 B2 B1 B0

$FD80 Read only 1 1 1
Joy

FIRE
Joy

RIGHT
Joy

LEFT
Joy

DOWN
Joy
UP

$FD81 Read only 1
Joy

„PotY”
Joy

„PotX”
Joy

FIRE
Joy

RIGHT
Joy

LEFT
Joy

DOWN
Joy
UP

$FD82 Read only
Mouse X

 b7
Mouse X

 b6
Mouse X

 b5
Mouse X

 b4
Mouse X

 b3
Mouse X

 b2
Mouse X

 b1
Mouse X

 b0

$FD83 Read only
Mouse Y

 b7
Mouse Y

 b6
Mouse Y

 b5
Mouse Y

 b4
Mouse Y

 b3
Mouse Y

 b2
Mouse Y

 b1
Mouse Y

 b0
$FD84 N/A
$FD85 N/A
$FD86 N/A
$FD87 N/A

$FD88 Read only
LastSID

 D7
LastSID

 D6
LastSID

 D5
LastSID

 D4
LastSID

 D3
LastSID

 D2
LastSID

 D1
LastSID

 D0

$FD89 Read only
LastSID

 R/W
0 0

LastSID
 A4

LastSID
 A3

LastSID
 A2

LastSID
 A1

LastSID
 A0

$FD8A N/A
$FD8B N/A
$FD8C N/A

$FD8D
Write
only

Config
Comm.7

Config
Comm.6

Config
Comm.5

Config
Comm.4

Config
Comm.3

Config
Comm.2

Config
Comm.1

Config
Comm.0

$FD8E Read only
PAL/
NTSC

0 0
Mouse
 mode

DigiBl.
 enable

$FE80
 enable

$D400
 enable

886kHz
985kHz

$FD8F Read only
Card
 type

Version
 b2

Version
 b1

Version
 b0

Revision
 b3

Revision
 b2

Revision
 b1

Revision
 b0

 Detailed description of the registers:

$FD80:
 Input register of the joystick port (read only)

 Inactive (non-activated) joystick inputs are 1, currently active inputs are 0. The register has two
operating modes, set by the "Mouse mode" bit.
 By default, the card is in "Analog mode" (1350/1351 compatible mode), and no joystick register
bits remap is done.
 In "digital mode" (Amiga mouse), the register bits are remapped, so that programs don't have to
take care about which type of mouse is actually used. (The bits effectively behave like there was a
1351 mouse connected to the port).

 B7, B6, B5: unused bits ("1" when read, similarly to the original SID card by Solder).
 B4: Joystick FIRE button / 1351 LMB : 0: pressed, 1: released
 B3: Joystick RIGHT: 0: active, 1: inactive
 B2: B2: Joystick LEFT: 0: active, 1: inactive
 B1: Joystick DOWN / Amiga MMB: 0: active, 1: inactive
 B0: Joystick UP / 1351 / Amiga RMB: 0: active, 1: inactive

$FD81:
 Input register of the joystick port (read only)

Similar in function to $FD80, with the exception that it'd give back the true state of the joystick
port, regardless of "Mouse mode".

 B7: Unused bit (reads 1)
 B6: "Mouse mode" is "digital": MMB, 0: pressed, 1: released; mode is "analog": unused, reads 1
 B5: "Mouse mode" is "digital": RMB, 0: pressed, 1: released; mode is "analog": unused, reads 1
 B4: Joystick FIRE button / 1351 / Amiga LMB : 0: pressed, 1: released
 B3: Joystick RIGHT: 0: active, 1: inactive
 B2: Joystick LEFT: 0: active, 1: inactive
 B1: Joystick DOWN: 0: active, 1: inactive
 B0: Joystick UP / 1351 RMB: 0: active, 1: inactive

 In practice, RMB and MMB only works if "Mouse mode" was set to "digital". The mouse buttons
of the Amiga mouse connect to port pins that are used as SID paddle inputs on a C64-style joystick
port; consequently, their handling needs them to be disconnected from the SID, as it is done here in
"digital" mode.

$FD82:
 Digital mouse X position (read only)

$FD83:
 Digital mouse Y position (read only)

With an AMIGA mouse, these registers hold the values of the X and Y position counters (ie. two 8-
bit wrapping-around counters). X rises with mouse movement from left to right; y rises with the
mouse moved "forth", towards the display. While the mouse setting is "digital mode", these
registers would also override the paddle registers of the SID available at $FD59 and $FD5A.

$FD84,
$FD85,
$FD86,
$FD87:
 Unused (reads 0)

$FD88:
 Parameter of last SID register access (read only)

 B7-B0: Written or read data of last SID access

$FD89:
 Additional parameters of last SID register access(read only)

 B7: R/W bit: 0: WRITE, 1: READ (the type of last SID access)
 B4-B0: A4-A0: Address of SID register that was accessed

 The stored parameters of last SID access cycle. These registers are accessible at any time, but
there's no use of using them except for the case of the SID being clocked at 985kHz. In this mode
the SID runs asynchronously to the Plus/4, which means that its registers can be written to (which is
buffered by hardware), but can't be read from (to put precisely: they can, but won't result in
predictably accessible data for the CPU). However: the result of those SID accesses are stored by
the card, and can be read from these registers. For that, the following method could be used:

LDA $FD59 ← Read SID PotX, throw invalid result away (#1)
LDA $FD88 ← Read the result of previous SID operation (#2)

 There's a small chance of failure in the above method, however: reading a SID register that way is
not an atomic operation. If SID read accesses are performed from the main program, and SID write
accesses are performed in an interrupt routine, problems can arise (e.g. #2 occassionally reads back
the result of a SID write operation performed by a music player that is called from the interrupt
routine). To avoid that, either disable interrupts before #1 (which can be re-enabled after performing
#2), or verify (by reading the address of the last accessed SID register in $FD88) that the result of
the appropriate access was read from $FD59 (and redo the read accordingly). The second method
can be used if interrupts should not be disabled.

read: LDA $FD59 ← Read SID PotX register (and throw result) (#1)
LDA $FD88 ← Read result (#2)
LDX $FD89 ← Read number of accessed SID register (#3)
CPX #$99 ← Was it ”read register $19”? (#4)
BNE read ← If not, try again (#5)

$FD8A,
$FD8B,
$FD8C:
 Unused (reads 0)

$FD8D:
 Card configuration bits (modify, write-only)

 It's not possible to modify the config bits of the card directly. Config bits are modified via writing
special values into $FD8D.

 $D0-$D3: Modify bits that control C64 "compatibility" features. B0 switches 886kHz/985kHz
mode, B1 enables SID access "under" the $D400 – $D41F range. The combinations are as follows:

 $D0: SID is clocked at 886kHz, write access at $D400 – $D41F is disabled (default)
 $D1: SID is clocked at 985kHz, write access at $D400 – $D41F is disabled
 $D2: SID is clocked at 886kHz, write access at $D400 – $D41F is enabled
 $D3: SID is clocked at 985kHz, write access at $D400 – $D41F is enabled

 The card defaults to mode $D0, unless the SID Reset button is held while the Reset button of the
Plus/4 is released; that would initialize the card in mode $D3.
 $F0/$F1: Disabling the $FE80 – $FE9F mirror of the SID register map.

 $F0: SID at $FE80 – $FE9F is disabled.
 $F1: SID at $FE80 – $FE9F is enabled (default).

 $DD/$DE: DigiBlaster 8-bit D/A emulation disable/enable

 $DD: DigiBlaster D/A is disabled.
 $DE: DigiBlaster D/A is enabled (default).

 $A0/$A1: "Mouse mode" switch

 $A0: "Analog mode", SID paddle inputs of the JoyPort are enabled, 1351 mode (default)
 $A1: "Digital mode", paddle inputs are disabled, inputs are handled digitally, needed for the
Amiga mouse.

 $E0/$E1: Solder SID-card compatibility switch

 $E0: NST-mode, all registers are accessible (default)
 $E1: Solder SID-card compatibility mode. In this mode the joystick port register is mirrored 16
times in the $FD80 – $FD8F range. None of the NST-specific registers are accessible in this mode.
There's a single exception to the rule: the control register can be written $E0, in order to get the card
back into native (NST) mode.

 IMPORTANT! Writing the configuration register may be potentially dangerous, because of
the following reason:

 The joystick port of Solder's SID card uses a 74LS245 8-bit bidirectional bus driver chip. The original plan
might have been using a MOS 6529B SPI (Single Port Interface) chip here, yet all production cards have the
LS245 (presumably for cutting down on manufacturing costs). (Incorporating a 6529B could have provided
100% compatibility with the C64 joyport, even the capability to use the joystick port as output - as supported
by the original design of the C64 joyport.) There's a significant difference between the outputs of the chips,
however: whilst the 6529B is an NMOS device that only provides weak "high" logical levels, the 74LS245
has totem pole outputs with strong low and high output levels. In the special case of writing the card's
joystick register ($FD80 – $FD8F), the written value is reflected on the joystick port pins for the single cycle
of the write operation. (If there was a 6529B here, the port would also keep the written value until the next
write). There won't be any problems with that, unless the written value contained "1" bits, and the respective

joystick port lines were currently being held active ("0") by the external device connected to the port. In that
special case, the output of the 74LS245 would source relatively high current. Usually, even that should not
result in problems, since the switches in a joystick won't presumably notice, and the 74LS245 itself usually
won't be damaged by accidents like that, yet, digital outputs - like joystick autofire circuits, 1350/1351
mouse circuitry - could be affected.

 All in all, it should be verified, PRIOR to writing the configuration register, if the NST SID
card is connected to the computer. If the connected card is Solder's original version, the
program shouldn't attempt writing the joystick port ie. the $FD80 – $FD8F area. There's an
example of how to do the verification at the end of the register description chapter.

 If the card is detected to be Solder's, that could also be because it's actually an NST card,
configured to be in compatibility mode. In that case, one might attempt to switch the card
back to native mode, by writing $E0 to $FD8D. Writing $E0 to the joystick port register of
Solder's card should be harmless, as bits 0-4 of $E0 are all 0, and bits 7-5 aren't connected to
the joystick port of Solder's card, so they couldn't make any problems.

$FD8E:
 Card configuration register (read only, reads $0C by default)

 The current configuration setting of the card (read only, can be modified by writing $FD8D).

 B7: Computer is in PAL (0) or NTSC (1) mode. The same as bit 6 of $FF07. Currently test, don't
use.
 B6, B5: unused, read 0
 B4: "Mouse mode" flag: 0: "analog", 1: "digital"
 B3: DigiBlaster D/A flag: 0: disabled, 1: enabled
 B2: $FE80 – $FE9F access of SID: 0: disabled, 1: enabled
 B1: $D400 – $D41F write access of SID: 0: disabled, 1: enabled
 B0: SID clock: 0: 886kHz, 1: 985kHz

$FD8F:
 Card "version number" (read only, currently $10)

 This register can be used to get version information of the card:

 B7: PAL (0) or NTSC (1) type. (The PAL card is unable to generate the correct PAL C64 clock ie.
985kHz with an NTSC Plus/4, that one needs an NTSC card)
 B6-B4: Version number of card
 B3-B0: Revision number of card

 Currently (2011.07.26) the value read from this register is $10 (there's no NTSC version yet, but
that one would read $90), which is interpreted V1.0.

 This register makes it possible to detect whether Solder's or the NST card is present, in a pretty
simple manner. The register should be read, and bits B4-B0 masked. If the result is $E0, it's Solder's
card. If it's Solder's card, $FD80 – $FD8F shouldn't be written to (...except for the $E0 value which
can't make harm in any way). (There certainly won't ever be V6.x and V7.x versions from the
NTSC card, so this check should work 100%).

 An example of how to detect the card:
LDA #$E0 ← Writing this value should be safe
STA $FD8D ← Set NST mode
LDA $FD8F ← Read version register
AND #$E0 ← Mask unneeded bits
CMP #$E0 ← Are bits B7-B5 all 1? (On Solder's card, they are).
BEQ solder ← Solder's card, configuration shouldn't be attempted.
LDA #$...
STA $DF8D ← Card configuration...
...
...

solder: LDA #$... ← Here continues the program

©2011 New System Technology
The right to correct any errors and inaccuracies is reserved!

 2011.09.10. First version

